# 

| Please write clearly in | block capitals. |                 |
|-------------------------|-----------------|-----------------|
| Centre number           | Ca              | andidate number |
| Surname                 |                 |                 |
| Forename(s)             |                 |                 |
| Candidate signature     |                 |                 |

## GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 16 May 2019

Morning

### Time allowed: 1 hour 45 minutes

#### Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.



Н





Do not write outside the

box

Answer **all** questions in the spaces provided.

0 1

This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

Figure 1 shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

|          | Group<br>1 | Group<br>2 | Group<br>3 | Group<br>4 | Group<br>5 | Group<br>6 | Group<br>7 |
|----------|------------|------------|------------|------------|------------|------------|------------|
| Period 1 | н          |            |            | . [        |            |            |            |
| Period 2 | Lī         | Be         | В          | с          | N          | 0          | F          |
| Period 3 | Na         | Mg         | Al         | Si         | P          | S          | Cl         |
| Period 4 | K<br>Cu    | Ca<br>Zn   | *          | Ti *       | V<br>As    | Cr<br>Se   | Mn<br>Br   |
| Period 5 | Rb<br>Ag   | Sr<br>Cd   | Y'<br>In   | Zr<br>Sn   | Nb<br>Sb   | Mo<br>Te   | *          |

#### Figure 1

0 1 . 1

The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127

Why did Mendeleev reverse the order of these two elements?

#### [1 mark]



| 0 1.2 | Mendeleev left spaces marked with an asterisk *                             |              | Do not writ<br>outside the<br>box |
|-------|-----------------------------------------------------------------------------|--------------|-----------------------------------|
|       | He left these spaces because he thought missing elements belonged           | d there.     |                                   |
|       | Why did Mendeleev's periodic table become more widely accepted th versions? | han previous |                                   |
|       |                                                                             | [3 marks]    |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
| 0 1.3 | Mendeleev arranged the elements in order of their atomic weight.            |              |                                   |
|       | What is the modern name for atomic weight?                                  | [1 mark]     |                                   |
|       | Tick (✓) <b>one</b> box.                                                    |              |                                   |
|       | Atomic number                                                               |              |                                   |
|       | Mass number                                                                 |              |                                   |
|       |                                                                             |              |                                   |
|       | Relative atomic mass                                                        |              |                                   |
|       | Relative formula mass                                                       |              |                                   |
|       |                                                                             |              |                                   |
| 0 1.4 | Complete the sentence.                                                      | [1 mark]     |                                   |
|       | In the modern periodic table, the elements are arranged in order of         |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |
|       |                                                                             |              |                                   |



|       |                                                                                                            |                   | Do not write<br>outside the |
|-------|------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
|       | Chlorine, iodine and astatine are in Group 7 of the modern periodic table.                                 |                   | box                         |
| 0 1.5 | Astatine (At) is below iodine in Group 7.                                                                  |                   |                             |
|       | Predict:                                                                                                   |                   |                             |
|       | <ul> <li>the formula of an astatine molecule</li> <li>the state of astatine at room temperature</li> </ul> |                   |                             |
|       |                                                                                                            | [2 marks]         |                             |
|       | Formula of astatine molecule                                                                               |                   |                             |
|       | State at room temperature                                                                                  |                   |                             |
|       |                                                                                                            |                   |                             |
| 0 1.6 | Sodium is in Group 1 of the modern periodic table.                                                         |                   |                             |
|       | Describe what you would see when sodium reacts with chlorine.                                              | [2 marks]         |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   | 10                          |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            |                   |                             |
|       |                                                                                                            | B/G/Jun19/8462/1H |                             |
|       |                                                                                                            |                   |                             |

| 0 2          | This question is about acids and alkalis.                                | Do not write<br>outside the<br>box |
|--------------|--------------------------------------------------------------------------|------------------------------------|
| 02.1         | Which ion do all acids produce in aqueous solution?                      |                                    |
|              | Tick (✓) <b>one</b> box.                                                 |                                    |
|              | H <sup>+</sup>                                                           |                                    |
|              | H-                                                                       |                                    |
|              | O <sup>2-</sup>                                                          |                                    |
|              | OH⁻                                                                      |                                    |
|              |                                                                          |                                    |
| 02.2         | Calcium hydroxide solution reacts with an acid to form calcium chloride. |                                    |
|              | Complete the word equation for the reaction. [2 marks]                   |                                    |
| calcium hydr | oxide +acid → calcium chloride +                                         |                                    |
|              |                                                                          |                                    |
|              | Question 2 continues on the next page                                    |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |
|              |                                                                          |                                    |







Do not write outside the

box





11

box





Do not write outside the box

 Table 1 shows some properties of materials.

The materials could be used to make badminton racket frames.

| Table | 1 |
|-------|---|
|-------|---|

| Material        | Density in g/cm <sup>3</sup> | Relative strength | Relative stiffness |
|-----------------|------------------------------|-------------------|--------------------|
| Aluminium       | 2.7                          | 0.3               | 69                 |
| Carbon nanotube | 1.5                          | 60                | 1000               |
| Wood            | 0.71                         | 0.1               | 10                 |

Evaluate the use of the materials to make badminton racket frames.

Use Table 1.

[4 marks]

| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
|      |  |







IB/G/Jun19/8462/1H

| 0 4  | This question is about atomic structure. |                       |                          |                 |           | Do not write<br>outside the<br>box |
|------|------------------------------------------|-----------------------|--------------------------|-----------------|-----------|------------------------------------|
| 04.1 | Atoms contain                            | subatomic particles.  |                          |                 |           |                                    |
|      | Table 2 shows                            | properties of two su  | ubatomic particles       |                 |           |                                    |
|      | Complete Tabl                            | e 2.                  |                          |                 | [2 marks] |                                    |
|      |                                          |                       | Table 2                  |                 | [         |                                    |
|      |                                          | Name of particle      | Relative mass            | Relative charge |           |                                    |
|      |                                          | neutron               |                          |                 |           |                                    |
|      |                                          |                       |                          | +1              |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      | An element X h                           | nas two isotopes.     |                          |                 |           |                                    |
|      | The isotopes h                           | ave different mass r  | numbers.                 |                 |           |                                    |
| 04.2 | Define mass n                            | umber.                |                          |                 | [1 mark]  |                                    |
|      |                                          |                       |                          |                 | [T mark]  |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
| 04.3 | Why is the mas                           | ss number different i | n the two isotope        | s?              |           |                                    |
|      |                                          |                       |                          |                 | [1 mark]  |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          | Question 4 continu    | ues on the next <b>p</b> | bage            |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |
|      |                                          |                       |                          |                 |           |                                    |



|       |                                                                                                                              | Do not write       |
|-------|------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 0 4.4 | The model of the atom changed as new evidence was discovered.                                                                | outside the<br>box |
|       | The plum pudding model suggested that the atom was a ball of positive charge with electrons embedded in it.                  |                    |
|       | Evidence from the alpha particle scattering experiment led to a change in the model of the atom from the plum pudding model. |                    |
|       | Explain how.<br>[4 marks]                                                                                                    |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              | 8                  |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |







Turn over ►

IB/G/Jun19/8462/1H





IB/G/Jun19/8462/1H

| 0 5.5 | Calculate the overall energy change for the reaction.              |           | Do not write<br>outside the<br>box |
|-------|--------------------------------------------------------------------|-----------|------------------------------------|
|       | Use Figure 7 and Table 3.                                          | [3 marks] |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       | Overall energy change =                                            | kJ        |                                    |
| 0 5.6 | Explain why the reaction between ammonia and oxygen is exothermic. |           |                                    |
|       | Use values from your calculation in Question <b>05.5</b>           | [2 marks] |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       | Question 5 continues on the next page                              |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |
|       |                                                                    |           |                                    |









Turn over ►

17

Table 4 shows the student's results.

Table 4

| Electrode X       Voltage of cell in volts         cobalt       +0.62         copper       0.00         magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0 6 .2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive | Electrode X       Voltage of cell in volts         cobalt       +0.62         copper       0.00         magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive |                                     |             | lable 4                  |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|--------------------------|---------|
| cobalt       +0.62         copper       0.00         magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                   | cobalt       +0.62         copper       0.00         magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48                                                                                                                                                                                                                               |                                     | Electrode X | Voltage of cell in volts |         |
| copper       0.00         magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0 6.2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                                                | copper         0.00           magnesium         +2.71           nickel         +0.59           silver         -0.46           tin         +0.48             0 6.2         Write the six metals used for electrode X in order of reactivity.   Use Table 4.           Justify your order of reactivity.             Most reactive                                                       |                                     | cobalt      | +0.62                    |         |
| magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0       6       2         Write the six metals used for electrode X in order of reactivity.       Use Table 4.         Justify your order of reactivity.       [4 mark         Most reactive                                                                              | magnesium       +2.71         nickel       +0.59         silver       -0.46         tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                                                                         |                                     | copper      | 0.00                     |         |
| nickel       +0.59         silver       -0.46         tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                                                                                                      | nickel       +0.59         silver       -0.46         tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Justify your order of reactivity.       [4 mark]         Most reactive                                                                              |                                     | magnesium   | +2.71                    |         |
| silver       -0.46         tin       +0.48         0 6.2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                                                                                                                                   | silver       -0.46         tin       +0.48         0       6       .2         Write the six metals used for electrode X in order of reactivity.       Use Table 4.         Justify your order of reactivity.       [4 mark         Most reactive                                                                                                                                       |                                     | nickel      | +0.59                    |         |
| tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Justify your order of reactivity.       [4 mark]         Most reactive                                                                                                                                   | tin       +0.48         0 6 . 2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Justify your order of reactivity.       [4 mark]         Most reactive                                                                                                                                    |                                     | silver      | -0.46                    |         |
| 0 6.2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.         Most reactive                                                                                                                                                                                                                      | 0       6       .2       Write the six metals used for electrode X in order of reactivity.         Use Table 4.       Justify your order of reactivity.       [4 mark         Most reactive                                                                                                                                                                                            |                                     | tin         | +0.48                    |         |
| Least reactive                                                                                                                                                                                                                                                                                                                                                                        | Least reactive                                                                                                                                                                                                                                                                                                                                                                         | Justify your order of Most reactive | reactivity. |                          | [4 mark |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        | Least reactive                      |             |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        |                                     |             |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        |                                     |             |                          |         |



box



19



Turn over ►

9

| 0 7     | This question is about electrolysis.                                                                     | Do not writ<br>outside the<br>box |
|---------|----------------------------------------------------------------------------------------------------------|-----------------------------------|
|         | Aluminium is produced by electrolysing a molten mixture of aluminium oxide and cryolite.                 |                                   |
| 0 7.1   | Explain why a mixture is used as the electrolyte instead of using only aluminium oxide.                  |                                   |
|         | [2 marks]                                                                                                |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
| 0 7 . 2 | What happens at the negative electrode during the production of aluminium? [1 mark]<br>Tick (✓) one box. |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
|         | Aluminium ions gain electrons.                                                                           |                                   |
|         | Aluminium ions lose electrons.                                                                           |                                   |
| 07.3    | Oxygen is produced at the positive electrode.                                                            |                                   |
|         | Complete the balanced half-equation for the process at the positive electrode. [2 marks]                 |                                   |
|         | $\rightarrow$ O <sub>2</sub> +                                                                           |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |
|         |                                                                                                          |                                   |



| 0 7.4 | Explain why the positive electrode must be continually replaced. [3 marks]                                                      | Do not v<br>outside<br>box |
|-------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|       |                                                                                                                                 |                            |
|       |                                                                                                                                 |                            |
| 0 7.5 | The overall equation for the electrolysis of aluminium oxide is:                                                                |                            |
|       | $2AI_2O_3\rightarrow4AI+3O_2$ Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed. |                            |
|       | Relative atomic masses ( $A_r$ ): $O = 16$ $AI = 27$ [4 marks]                                                                  |                            |
|       |                                                                                                                                 |                            |
|       |                                                                                                                                 |                            |
|       |                                                                                                                                 |                            |
|       |                                                                                                                                 |                            |
|       | Mass of oxygen = kg                                                                                                             |                            |
|       |                                                                                                                                 |                            |
|       |                                                                                                                                 |                            |



|      | Sodium metal and chlorine gas are produced by the electrolysis of molten sodium chloride.              | Do not write<br>outside the<br>box |
|------|--------------------------------------------------------------------------------------------------------|------------------------------------|
| 07.6 | Explain why sodium chloride solution <b>cannot</b> be used as the electrolyte to produce sodium metal. |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
| 07.7 | Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.                       |                                    |
|      | The volume of one mole of any gas at room temperature and pressure is 24.0 dm <sup>3</sup>             |                                    |
|      | Relative formula mass ( $M_r$ ): $CI_2 = 71$ [2 marks]                                                 |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
|      | Volume = dm <sup>3</sup>                                                                               |                                    |
|      |                                                                                                        | 16                                 |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |
|      |                                                                                                        |                                    |



IB/G/Jun19/8462/1H





Turn over ►

IB/G/Jun19/8462/1H

box





Do not write outside the

box





IB/G/Jun19/8462/1H



**Table 5** shows the teacher's results.

Table 5

|                                                  | Mass in g |
|--------------------------------------------------|-----------|
| Tube <b>A</b> empty                              | 105.72    |
| Tube <b>A</b> and oxide of copper before heating | 115.47    |
| Tube <b>A</b> and contents after 2 minutes       | 114.62    |
| Tube <b>A</b> and contents after 4 minutes       | 114.38    |
| Tube <b>A</b> and contents after 6 minutes       | 114.38    |
| Tube <b>B</b> and contents at start              | 120.93    |
| Tube <b>B</b> and contents at end                | 123.38    |

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen  $\rightarrow$  copper + water



| 08.3 | Determine the mass of copper and the mass of water produced in this experiment.           | Do not write<br>outside the<br>box |
|------|-------------------------------------------------------------------------------------------|------------------------------------|
|      | Use Table 5.                                                                              |                                    |
|      | [2 marks]                                                                                 |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      | Mass of copper = g                                                                        |                                    |
|      | Mass of water = g                                                                         |                                    |
| 08.4 | The teacher repeated the experiment with a different sample of the oxide of copper.       |                                    |
|      | The teacher found that the oxide of copper produced 2.54 g of copper and 0.72 g of water. |                                    |
|      | Two possible equations for the reaction are:                                              |                                    |
|      | Equation 1: $Cu_2O + H_2 \rightarrow 2Cu + H_2O$                                          |                                    |
|      | <b>Equation 2:</b> CuO + H <sub>2</sub> $\rightarrow$ Cu + H <sub>2</sub> O               |                                    |
|      | Determine which is the correct equation for the reaction in the teacher's experiment.     |                                    |
|      | Relative atomic masses ( $A_r$ ): H = 1 O = 16 Cu = 63.5                                  |                                    |
|      | [3 marks]                                                                                 |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           | 8                                  |
|      | Turn over for the next question                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |







|       |                                                                                                                              | Do not write       |
|-------|------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 09    | A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution. | outside the<br>box |
|       | This is the method used.                                                                                                     |                    |
|       | 1. Measure 25.0 cm <sup>3</sup> potassium hydroxide solution into a polystyrene cup.                                         |                    |
|       | 2. Record the temperature of the solution.                                                                                   |                    |
|       | 3. Add 2.0 cm <sup>3</sup> dilute sulfuric acid.                                                                             |                    |
|       | 4. Stir the solution.                                                                                                        |                    |
|       | 5. Record the temperature of the solution.                                                                                   |                    |
|       | 6. Repeat steps 3 to 5 until a total of 20.0 cm <sup>3</sup> dilute sulfuric acid has been added.                            |                    |
|       | Suggest why the student used a polystyrone cup rather than a class beaker for the                                            |                    |
| 0 9.1 | reaction.                                                                                                                    |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       | Question 9 continues on the next page                                                                                        |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |
|       |                                                                                                                              |                    |



Do not write outside the box

30

 Table 6 shows some of the student's results.

Table 6

| Volume of dilute sulfuric acid added in cm <sup>3</sup> | Temperature in °C |
|---------------------------------------------------------|-------------------|
| 0.0                                                     | 18.9              |
| 2.0                                                     | 21.7              |
| 4.0                                                     | 23.6              |
| 6.0                                                     | 25.0              |
| 8.0                                                     | 26.1              |
| 10.0                                                    | 27.1              |

Figure 11 shows some of the data from the investigation.



Figure 11

![](_page_29_Picture_8.jpeg)

|      | Complete Figure 11                                                                                                                                           |                 | Do not write<br>outside the<br>box |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------|
|      | <ul> <li>plot the data from Table 6</li> <li>draw a line of best fit through these points</li> <li>extend the lines of best fit until they cross.</li> </ul> | 4 marks]        |                                    |
| 09.3 | Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm <sup>3</sup> of the potassium hydroxide solution.                       |                 |                                    |
|      | Use Figure 11.                                                                                                                                               | [1 mark]        |                                    |
|      | Volume of dilute sulfuric acid to react completely =                                                                                                         | cm <sup>3</sup> |                                    |
| 09.4 | Determine the overall temperature change when the reaction is complete.                                                                                      |                 |                                    |
|      | Use Figure 11.                                                                                                                                               | [1 mark]        |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      | Overall temperature change =                                                                                                                                 | °C              |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      | Question 9 continues on the next page                                                                                                                        |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |
|      |                                                                                                                                                              |                 |                                    |

![](_page_30_Picture_3.jpeg)

|                                                                                                                                                |                                                                                                                                                                              | Do not write |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 09.5                                                                                                                                           | The student repeated the investigation.                                                                                                                                      | box          |
|                                                                                                                                                | The student used solutions that had different concentrations from the first investigation.                                                                                   |              |
|                                                                                                                                                | The student found that 15.5 cm <sup>3</sup> of 0.500 mol/dm <sup>3</sup> dilute sulfuric acid completely reacted with 25.0 cm <sup>3</sup> of potassium hydroxide solution.  |              |
| The equation for the reaction is:                                                                                                              |                                                                                                                                                                              |              |
| $2KOH$ + $H_2SO_4$ $\rightarrow$ $K_2SO_4$ + $2H_2O$ Calculate the concentration of the potassium hydroxide solution in mol/dm^3 and in g/dm^3 |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                |                                                                                                                                                                              |              |
|                                                                                                                                                | Concentration in mol/dm <sup>3</sup> = mol/dm <sup>3</sup>                                                                                                                   |              |
|                                                                                                                                                | Concentration in $g/dm^3 = $ $g/dm^3$                                                                                                                                        |              |
|                                                                                                                                                | END OF QUESTIONS                                                                                                                                                             | 14           |
| Copyright inform                                                                                                                               | ation                                                                                                                                                                        |              |
| For confidentiality p<br>from www.aqa.org.u                                                                                                    | urposes acknowledgements of third-party copyright material are published in a separate booklet which is available for free download<br>Ik after the live examination series. |              |
| Copyright © 2019 A                                                                                                                             | QA and its licensors. All rights reserved.                                                                                                                                   |              |

![](_page_31_Picture_2.jpeg)

IB/G/Jun19/8462/1H

1 9 6 G 8 4 6 2 / 1 H